Sampling to Quantify Respirable Dust Generation

Jay Colinet
Senior Scientist

Dust Control, Ventilation, and Toxic Substances Branch
NIOSH Office of Mine Safety and Health Research
Pittsburgh, PA

Presentation topics

- Current respirable dust standards and sampling requirements
- Dust sampling instruments approved for use in underground US coal mines
- Sampling methods to quantify dust sources

Respirable dust standard for coal mining

(Federal Coal Mine Health and Safety Act of 1969)

Gravimetric dust sampler

- Provides time-weighted-average respirable dust concentration
- Dorr-Oliver cyclone separates respirable and oversize dust
- Pump operated at 2.0 liters per minute in coal mines

Sampling with gravimetric sampler

- Filter is pre- and post-weighed to determine mass gain and is used to calculate an <u>average</u> dust concentration over sampling period
- Filter processed using MSHA P7 infrared analytical technique for silica content
- Sufficient mass must be collected to have confidence in measurement
- NIOSH typically uses multiple gravimetric samplers and averages data

Personal DataRAM (pDR)

- Uses light scattering as measurement technology
- Instantaneous readings correlated with time and stored in internal memory
- Relative concentrations impacted by:
 - size distribution of dust
 - composition of dust
 - water mist in air
- PRL adjusts readings with ratio obtained from adjacent gravimetric samplers

pDR field calibration

- Divide average gravimetric concentration by average pDR concentration for same sampling period
- Multiply all individual pDR readings by ratio
- Example:

gravimetric average = 1.4 mg/m³
pDR average = 1.1 mg/m³
grav/pDR ratio = 1.4/1.1 = 1.27
pDR concentrations * 1.27 = adjusted pDR concentrations

pDR provides time record of dust levels

Personal Dust Monitor (PDM)

- Real-time measurement of respirable dust
- Combines dust sampler and cap lamp into one unit
- Sample inlet is mounted on cap lamp
- Utilizes mass-based measurement to quantify dust concentration (TEOM)
- Dust measurements are displayed on screen and stored internally for later analysis

Principle of operation

- Exchangeable filter cartridge mounted on the end of the tapered element collects particles as sample stream flows through hollow tube
- Tapered element oscillates at its harmonic frequency -- like a tuning fork
- Frequency changes in *direct* relation to the mass collected on the filter
- Measurement principle does not respond to other particle characteristics such as size distribution or composition (heated circuit removes moisture)

PDM status:

- Meets NIOSH sampling accuracy requirements (NIOSH RI 9669)
- Equivalency to CMPDSU (gravimetric sampler) published in peer-review journal
- MSHA IS approval granted for use in underground coal mines
- CFR 30, Part 74 modified rule published April 6, 2010
- Thermo Scientific began delivery of commercial units in July 2009
- Two ongoing NIOSH research efforts (software and silica)

PDM analytical software

- Compile output from PDM samplers
- Provide user-selected summaries for multiple samplers (foreman, mine superintendent, etc.) or engineering evaluations
- Provide graphing capabilities

-	- 15	В	C	D	E	F	G	H	1	J	K	L	M	N	0	P	
4	# Start Time: 07						10000										
2		# End Time: 18:00:01 07/30/2008															
3	# Wearer ID: 1012																
4	# Mine ID Numb																
5	# Contractor Code:																
8	# Mine Name: Aome																
7	# Company Name: Coal LLC																
8	# Sample Type:																
9	# MMU DA/SA:																
0	# Occ Code: 012																
1	# Part 90 Miner																
2	# Certified Perso	on:															
3	#																
4	Time		AIR HEAT	TE HEATE	FLOV RAT	MASS KO	MASS FO										
5	7/30/2008 7:00	105	43		2.2	13846	288,3122										
6	7/30/2008 16:00	105	43	46	2.2	13846	288.3122										
7																	
3	Time	STATUS	AIR HEAT	TEHEATE	AMBIENT	DIFFEREN	FLOW BAT	AMBIENT	RHPERC	MASS0 TO	MASSO CO	MASSO CI	PROJECT N	MASSITC	MASSICC!	TILT Z DUT	TY.
3	7/30/2008 7:00		43.07023	46.02931	742.2017		2.199938	25.3373	38.57457	0	1.957668	1.709396	0	0	1.957668	63,33989	
0	7/30/2008 7:01		43.07023	46.02931	742.2017	-46.11029	2.199938	25.3373	38.57457	0	1.655445	1.38272	0	0	1.655445	65.09545	
	7/30/2008 7:02		43.07023	46.02931	742.2017	-46.11029	2,199938	25.3373	38.57457	.0	1.655445	1.38272	0	0	1.655445	65.09545	
2	7/30/2008 7:03		43.07023	46.02931	742,2017	-46.61493	2.199938	25.3373	38.57457	0.011283	2.035846	1.736231	0	0.011283	2.035846	62,31209	
3	7/30/2008 7:04		43.07023	46.02931	742.2017		2.199938	25.20537	38.57457	0.011283	2.035846	1.864717	0.01364	0.011283	1.995851	63,33088	
4	7/30/2008 7:05		43.07023	46.02931	742.2017	-46.64362	2.199938	25.20537	38.57457	0.011283	1.961956	1.711413	0.01364	0.011283	1.961956	63.33088	
5	7/30/2008 7:06		43.07023	46.02931	742.2017	-47.28967	2.199938	25.36383	38.57457	0.022856	1.869375	1.747324	0.01364	0.022856	1.869375	63,33088	
6	7/30/2008 7:07		43.07023	46.02931	742,2017	-47.40216	2.199938	25.36383	37.37975	0.022856	1.869375	1.68516	0.01364	0.022856	1.823317	63.33088	
7	7/30/2008 7:08		43.07023	46,02931	742.2017	-47.91956	2.199938	25.36383	35.98792	0.022856	1.733021	1.650241	0.024295	0.022856	1.733021	62.01268	
3	7/30/2008 7:09		43.07023	46.02931	742.2017	-48.039	2.199938	25.25729	35.98792	0.033648	1.733021	1.709777	0.024295	0.033648	1.733021	63,4618	3
3	7/30/2008 7:10		43.07023	46.02931	742.2017	-48.21472	2.199938	25.25729	37.26128	0.033648	1.733021	1.709777	0.024295	0.033648	1.745422	63,4618	
10	7/30/2008 7:11		43.07023	46.02931	742.2017	-48.58722	2.199938	25.42719	37.26128	0.033648	1.733021	1.75812	0.035651	0.033648	1.757867	59.28986	
	7/30/2008 7:12		43.07023	46.02931	742.2017	-48,85986	2.199938	25.58787	37.26128	0.050044	1.806922	1.906455	0.035651	0.050044	1.806922	63,10898	
	7/30/2008 7:13		43.07023	46.02931	742.2017	-48.97601	2.199938	25.70879	37.26128	0.050044	1.867115	1.906455	0.035651	0.050044	1.867115	63.10898	
	7/30/2008 7:14		43.07023	46.02931	742.2017	-49.92926	2.199938	25.70879	37.26128	0.050044	1.867115	1.957527	0.050569	0.050044	1.902353	63,10898	
	7/30/2008 7:15		43.07023	46.02931	742.2017	-49.55591	2.199938	25.70879	37.26128	0.062221	1.928447	1.891094	0.050569	0.062221	1.928447	63.10891	
	7/30/2008 7:16		43.07023	46.02931	742.2017	-50.43732	2.199938	25.70879	37.26128	0.062221	1.928447	1.924207	0.050569	0.062221	1.979856	63,1089	
	7/30/2008 7:17		43.07023	46.02931			2.199938	25.70879	37.26128	0.062221	1.928447	1.924207	0.050569	0.062221	1.998363	63.1089	
	7/30/2008 7:18		43.07023	46.02931	742.2017	-50.612	2.199938	25.70879	38,5776	0.076476	1.928447	1.935487	0.064337	0.076476	2.017298	63.1089	
	7/30/2008 7:19		43.07023	46.02931	742.2017	-50.65167	2.199938	25.54123	38,5776	0.076476	1.928447	1.89249	0.064337	0.076476		65.1055	
t	7/30/2008 7:20		43.07023	46.02931	742.2017	-51.01233	2.199938	25.54123	37.19453	0.076476	1.928447	1.92818	0.064337	0.076476		62,4575	
1	7/30/2008 7:21		43.07023	46.02931	742.2017	-51.59625	2.199938	25.54123	37.19453	0.087974	1.928447	1,9091	0.064337	0.087974		62,4575	
	7/30/2008 7:22		43.07023	46.02931	742.2017	-51.71686	2.199938	25.54123	37.19453	0.087974	1.928447	1,9091	0.077344	0.087974			
	7/30/2008 7:22		43.07023	46.02931	742.2017	-52.20038	2.199938	25.54123	37.19453	0.087974	1.928447	1.849045	0.077344	0.087974			
	7/30/2008 7:24		43.07023	46.02931	742.2017	-52.08337	2.199938	25.64989	36.06315	0.087974	1.928447	1.80204	0.077344				
-					742.2017	-52.33838	2.199938	25,53248						0.087974			
	7/30/2008 7:25		43.07023	46.02931			2.199938		36.06315	0.099899	1.928447	1.820008	0.077344	0.099899			
	7/30/2008 7:26		43.07023	46.02931	742.2017	-52.22467	2.199938	25.53248	36.06315	0.099899	1.928447	1.779111	0.077344	0.099899			
() H data		ary / gra			ins / Sh		12330	ALL COLORS			<	0.000044	~ ~ ~ ~ ~ ~ ~	ARPAGA	- nn man	en:

PDM filter capsule for maintaining sample integrity for quartz analysis

- Place capsule over PDM filter when TEOM unit removed from PDM
- Use capsule as filter removal tool and to secure dust
- Send to lab, remove finger tab, ash capsule
- Plan to conduct mine surveys to complete side-by-side testing with current silica analysis method

Sampling to isolate a fixed dust source

Sampling to isolate a mobile dust source

U - Upwind location D - Downwind location

Using real-time data to quantify mobile dust sources

- Evaluate dust levels during truck haulage cycle at an underground gold mine
- Use pDR samplers and time study data to quantify dust generation for different parts of cycle
 - loading
 - hauling full
 - dumping
 - hauling empty
- Two researchers conducting time studies

Time-weighted-average dust contributions

Dump location had highest dust contribution despite having the shortest duration... (14% time vs 34% dust)

Sampling to isolate an unconfined dust source

- A Ambient sampling location
- D Drill sampling locations

Thank you!

Questions??

Jay Colinet
Office of Mine Safety and Health Research
NIOSH
P.O. Box 18070
Pittsburgh, PA 15236

412-386-6825 jcolinet@cdc.gov

The findings and conclusions in this presentation have not been formally disseminated by NIOSH and should not be construed to represent any agency determination or policy.

